miércoles, 2 de agosto de 2017

CURSO DE HIDRÁULICA LECCION 2

SISTEMAS NEUMÁTICOS 


Clip Aquí Vídeo interactivo Sistemas neumáticos.  


Introducción a la neumática



La neumática es la ciencia que emplea el aire comprimido como modo de transmisión de la energía necesaria para mover y hacer funcionar mecanismos. El aire es un material elástico y por tanto, al aplicarle una fuerza, se comprime, mantiene esta compresión y devolverá la energía acumulada cuando se le permita expandirse, según la los gases ideales. 



Producción y tratamiento de aire comprimido

El aire comprimido, por el hecho de comprimirse, comprime también todas las impurezas que contiene, tales como polvo, hollín, suciedad, hidrocarburos, gérmenes y vapor de agua. A estas impurezas se suman las partículas que provienen del propio compresor, tales como polvo de abrasión por desgaste, aceites y aerosoles y los residuos y depósitos de la red de tuberías, tales como óxido, residuos de soldadura, y las substancias hermetizantes que pueden producirse durante el montaje de las tuberías y accesorios.

 Estas impurezas pueden crear partículas más grandes (polvo +aceite) por lo que dan origen muchas veces a averías y pueden conducir a la destrucción de los elementos neumáticos. Es vital eliminarlas en los procesos de producción de aire comprimido, en los compresores y en el de preparación para la alimentación directa de los dispositivos neumáticos. Por otro lado, desde el punto de vista de prevención de los riesgos laborales, el aire de escape que contiene aceite puede dañar la salud de los operarios y, además, es perjudicial para el medio ambiente.


COMPONENTES DE UN SISTEMA NEUMÁTICO

 Preparación de aire comprimido

El proceso puede clasificarse en tres fases. La eliminación de partículas gruesas, el secado y la preparación fina del aire. En el compresor, el aire se calienta, por lo que es necesario montar un equipo de refrigeración del aire inmediatamente detrás del compresor. El aumento de temperatura en el calentamiento viene dado por la siguiente fórmula:



La refrigeración de se consigue en compresores pequeños, con aletas de refrigeración montadas en los cilindros que se encargan de irradiar el calor y en los compresores mayores, un ventilador adicional, que es la cual el calor o bien en caso de potencias muy grandes con un sistema de refrigeración por circulación de agua en circuito cerrado o abierto.



Si no se utiliza un compresor exento de aceite el aire contendrá una mezcla comprimida de aire y aceite y partículas gruesas que debe extraerse mediante un separador (deposito acumulador situado a la salida del compresor).


A continuación, el aire de secarse para conseguir que su punto de rocío sea bastante inferior a la temperatura mínima que se va a tener a lo largo del año en el ambiente de trabajo donde están los equipos neumáticos.
El secado tiene lugar en el filtro secador, siendo los procedimientos usuales el secado por frío, el de absorción, el de membrana y el de adsorción.

En el método de secado por frío o de refrigeración, del aire disminuye por efecto de un agente refrigerante formándose condensado y disminuyendo así el contenido de agua del aire.




En el secado por adsorción, la humedad es absorbida y se disuelve en una sustancia química. La sustancia química es una solución salina a base de NaCl que se consume a razón de un kilogramo de sal por cada 13 kg de condensado, por lo que debe reponerse constantemente. Con este sistema, se alcanza un. De condensación máximo de -15 °C. Otros agentes refrigerantes son glicerina, ácido sulfúrico, tiza deshidratada y sal de magnesio y hiperacidificado.




Los secadores de membrana están compuestos por un haz de fibras huecas permeables al vapor y que está rodeada por aire seco derivado del aire que ya fue sometido al proceso de secado. El secado se produce por la diferencia parcial de presión entre el aire húmedo en el interior de las fibras huecas y el flujo en sentido contrario del aire seco. Con este método se alcanzan puntos de condensación de hasta -40 °C (punto de rocío del aire comprimido).

Las fibras huecas son de material exento de silicona y están cubiertas de una ínfima capa que forma la superficie de la membrana. Las membranas pueden ser porosas que impiden el paso de agua y aceite y homogéneas que sólo permiten el paso del vapor de agua. El aire de enjuague al proceder del proceso de secado representa un consumo importante de aire que reduce el rendimiento del secador. Estos secadores se utilizan preferentemente en tramos parciales de la red o en sus puntos finales.

En el proceso de secado por adsorción, las fuerzas moleculares induce el enlace de las moléculas del gas o del vapor. El agente secante es un gel que también se consume, aunque puede regenerarse. Según el tipo de agente secador que se utilice, se alcanzan puntos de condensación de hasta -70 °C. 





Acumulador de aire comprimido



Tiene la finalidad de almacenar el aire comprimido que proporciona el compresor. Su fin principal consiste en adaptar el caudal del compresor al consumo de la red. Debe cumplir varios requisitos; entre ellos: una puerta para inspección interior, un grifo de purga, un manómetro, válvula de seguridad, válvula de cierre, e indicador de temperatura. Puede colocarse horizontal o verticalmente, pero a ser posible alejado de toda fuente calorífica, para facilitar la condensación del vapor de agua procedente del compresor.


Sus funciones en una instalación de aire comprimido son: 

• Amortiguar las pulsaciones del caudal de la salida de los compresores.
• Permitir que los motores de arrastre de los compresores no tengan que trabajar de manera continua, sino intermitente.
• Hacer frente a las demandas punta del caudal sin que se provoquen caídas de presión.


Por lo general los depósitos son cilíndricos de chapa de acero. Los factores que influyen en el dimensionamiento de los depósitos son el caudal del compresor (mínimo debe tener 1/10 el volumen entregado en un minuto por el compresor, en hidráulica deben ser mínimo 3 veces mayor que el caudal), las variaciones de demanda, y la refrigeración. Símbolo de depósito:



. Elementos de un sistema neumático

En todo sistema neumático se pueden distinguir los siguientes elementos:

· Elementos generadores de energía. Tanto si se trabaja con aire como con un líquido, se ha de conseguir que el fluido transmita la energía necesaria para el sistema. En los sistemas neumáticos se utiliza un compresor, mientras que en el caso de la hidráulica se recurre a una bomba. Tanto el compresor como la bomba han de ser accionados por medio de un motor eléctrico o de combustión interna.

· Elemento de tratamiento de los fluidos. En el caso de los sistemas neumáticos, debido a la humedad existente en la atmósfera, es preciso proceder al secado del aire antes de su utilización; también será necesario filtrarlo y regular su presión, para que no se introduzcan impurezas en el sistema ni se produzcan sobrepresiones que pudieran perjudicar su funcionamiento. Los sistemas hidráulicos trabajan en circuito cerrado, y por ese motivo necesitan disponer de un depósito de aceite y también, al igual que en los sistemas neumáticos, deberán ir provistos de elementos de filtrado y regulación de presión.

· Elementos de mando y control. Tanto en sistemas neumáticos como en hidráulicos, se encargan de conducir de forma adecuada la energía comunicada al fluido en el compresor o en la bomba hacia los elementos actuadores.


· Elementos actuadores. Son los elementos que permiten transformar la energía del fluido en movimiento, en trabajo útil. Son los elementos de trabajo del sistema y se pueden dividir en dos grandes grupos: cilindros, en los que se producen movimientos lineales y motores, en los que tienen lugar movimientos rotativos. 



Introducción al mando neumático


Los mandos neumáticos están constituidos por elementos de señalización, elementos de mando y elementos de trabajo. 





Mandos elementales

Los mandos neumáticos están constituidos por elementos de señalización, elementos de mando y un aporte de trabajo. Los elementos de señalización y mando modulan las fases de trabajo de los elementos de trabajo y se denominan válvulas.

Para el tratamiento de la información de mando es preciso emplear aparatos que controlen y dirijan el fluido de forma preestablecida, lo que obliga a disponer de una serie de elementos que efectúen las funciones deseadas relativas al control y dirección del flujo del aire comprimido.

En los principios de la automatización, los elementos rediseñados se mandan manual o mecánicamente. Cuando por necesidades de trabajo se precisaba efectuar el mando a distancia, se utilizan elementos de comando por símbolo neumático (cuervo).

Actualmente, además de los mandos manuales para la actuación de estos elementos, se emplean para el comando procedimientos servo-neumáticos, electroneumáticos y automáticos que efectúan en su totalidad el tratamiento de la información y de la amplificación de señales.

La gran evolución de la neumática y la hidráulica ha hecho, a su vez, evolucionar los procesos para el tratamiento y amplificación de señales, y por tanto, hoy en día se dispone de una gama muy extensa de válvulas y distribuidores que nos permiten elegir el sistema que mejor se adapte a las necesidades.

Hay veces que el comando se realiza manualmente, y otras nos obliga a recurrir a la electricidad (para automatizar) por razones diversas, sobre todo cuando las distancias son importantes y no existen circunstancias adversas. 



Programación con PLC.

Una instalación neumática o hidráulica puede controlarse desde un PLC (controladores lógicos programables) con la ventaja de ser modificable. De modo que la programación y el aspecto de las pantallas del monitor pueden cambiarse más adelante para una nueva instalación, o bien, diseñar simplemente una mejora en el circuito.

Existe una norma de estandarización de programas para el PLC con cuatro lenguajes de programación que son los más utilizados.

- Lenguaje de contactos (ladder) Emula la estructura de los esquemas eléctricos. Representa una red de contactos y bobinas que el autómata ejecuta secuencialmente.

- Lenguaje lista de instrucciones. Está formado por una serie de instrucciones ejecutadas secuencialmente por el PLC y es parecido al lenguaje ensamblador, pero se estructura igual que el lenguaje de contactos porque las instrucciones se organizan en secuencia. Dispone de dos tipos de códigos de instrucción, el de prueba y el de acción.

- Lenguaje literal estructurado: al igual que el de lista de instrucciones es un lenguaje evolucionado. Se basa en el código C y resulta muy sencillo para gestionar tablas, funciones aritméticas, etc.


- Lenguaje Grafcet: permite representar gráficamente el funcionamiento de un automatismo secuencial. Su estructura está basada en etapas y transiciones y permite representar cualquier diagrama de estados. 



Clasificación de los elementos neumáticos y sus partes

Los elementos neumáticos se pueden dividir en elementos de trabajo y elementos de control, como se vio en el punto anterior. A continuación solamente veremos los tipos de los elementos de control y trabajo y los veremos más detalladamente en el capítulo 3 (elementos de control y mando) y capítulo 4 (actuadores).

- Elementos de trabajo. (Actuadores, véase capitulo 4) De movimiento rectilíneo, Cilindros neumáticos: Existen diferentes tipos: de simple efecto, de membrana y de doble efecto (doble vástago, tándem, giro, etc.).

De Movimiento giratorio, motores: Estos elementos transforman la energía neumática el movimiento de giro mecánico. En los motores de aire comprimido su ángulo de giro no está limitado, se dividen en tres tipos de motores de émbolo, aletas y engranajes.

– Elementos de control (véase capitulo 3. Elementos de control y mando) Las válvulas son elementos que mandan o regulan la puesta en marcha, el paro y la dirección, así como, la presión o el caudal del fluido enviado por una bomba o que está almacenado en un depósito.

- Elementos generadores de energía. En los sistemas neumáticos se utiliza un compresor, el cual es accionado por medio de un motor eléctrico o de combustión interna.

Compresores: La presión atmosférica es una presión muy pequeña como para poder ser utilizada en los circuitos neumáticos. Por ello es necesario disponer de aire a presiones superiores, obteniendo de esta forma lo que se conoce como aire comprimido. El elemento cuya función es la de elevar la presión del aire se denomina compresor. De esta forma podemos definir como compresor a una máquina que toma el aire en unas determinadas condiciones y lo impulsa a una presión mayor a la de entrada. El compresor para poder realizar este trabajo de compresión debe tomar la energía de un motor eléctrico.

En los esquemas neumáticos cada uno de los elementos que lo forman son representados por símbolos. En la figura se representa el símbolo correspondiente al compresor. 



Tipos de Compresores.


Compresor de émbolo
Este compresor aspira el aire a la presión atmosférica y luego lo comprime. Se compone de las válvulas de admisión y escape, émbolo y biela-manivela. Admisión: El árbol gira en el sentido del reloj. La biela desciende el émbolo hacia abajo y la válvula de admisión deja entrar aire 10º después del punto muerto superior, hasta el punto muerto inferior. Escape: En el punto muerto inferior le válvula se cierra, y al ascender el émbolo se comprime el aire. Bajo el efecto de la presión, se abre y circula el aire comprimido hacia el consumidor.

Compresor de émbolo de dos etapas 
El movimiento molecular, provoca una elevación de la temperatura: Ley de transformación de la energía. Si se desean obtener presiones mayores es necesario disminuir la temperatura. En este tipo de compresores existe una cámara de enfriamiento del aire antes de pasar a la segunda compresión.

Compresor de émbolo, de dos etapas, doble acción.
La compresión se efectúa por movimiento alternativo del émbolo. El aire es aspirado, comprimido, enfriado y pasa a una nueva compresión para obtener una presión y rendimiento superior.

Compresor de émbolo con membrana.
El funcionamiento es similar al del compresor de émbolo. La aspiración y comprensión la realiza la membrana, animada por un movimiento alternativo. El interés de este compresor radica en la ausencia de aceite en el aire impulsado por este tipo.

Compresor radial de paletas. 
Un rotor excéntrico, dotado de paletas gira en un alojamiento cilíndrico. La estanqueidad en rotación se asegura por la fuerza centrífuga que comprime las paletas sobre la pared. La aspiración se realiza cuando el volumen de la cámara es grande y resulta la compresión al disminuir el volumen progresivamente hacia la salida. Pueden obtenerse presiones desde 200 a 1000 kPa (2 a 10 bares), con caudales entre 4 y 15 m³/min.

Compresor de tornillo
La aspiración y la compresión se efectúan por dos tornillos, uno engrana en el otro. La compresión se realiza axialmente. Pueden obtenerse a presiones de 1000kPa (10 bares) caudales entre 30 a 170 m³/min.

Compresor Rooths. 
Dos llaves que giran en sentido inverso encierran cada vuelta un volumen de aire entre la pared y su perfil respectivo. Este volumen de aire es llevado al fin del giro a la presión deseada.

Turbo compresor.
Este tipo de compresor es una turbina de tres etapas. El aire es aspirado, y su presión se eleva en cada etapa 1.3 veces aproximadamente.

Turbocompresor radial. 
El aire aspirado axialmente es introducido a una velocidad muy alta. La compresión tiene lugar radialmente. Este tipo de compresor es recomendable cuando se desean grandes caudales. Entre las diferentes etapas hay que tener previsto las cámaras de enfriamiento.

Turbocompresor axial. 
Este tipo de compresor funciona con el principio del ventilador. El aire es aspirado e impulsado simultáneamente. Las presiones son muy bajas, pero los caudales pueden ser muy elevados.

- Elemento de tratamiento de los fluidos. En el caso de los sistemas neumáticos, debido a la humedad existente en la atmósfera, es preciso proceder al secado del aire antes de su utilización; también será necesario filtrarlo y regular su presión, para que no se introduzcan impurezas en el sistema ni se produzcan sobrepresiones que pudieran perjudicar su funcionamiento. Los procesos de secado ya se trataron en el punto 2.2.2, ahora veremos a otros elementos que son el filtro y el lubricador.


Filtro de aire comprimido con purga.
Este filtro libera las impurezas, sobre todo agua condensada. El aire es conducido por una guía que la imprime un rápido movimiento circular, con lo cual las partículas más pesadas y las gotas de agua son proyectadas hacia fuera, a la pared de la cubeta del filtro, donde se precipitan. El condensado se recoge en la parte inferior y debe ser evacuado a través del tornillo de purga, cuando se haya alcanzado la cota del nivel máximo. Las partículas más finas son retenidas por el cartucho filtrante, por el cual debe circular el aire comprimido en su fluir hacia la utilización. El cartucho de filtro debe limpiarse o sustituirse periódicamente. 





LUBRICADOR DE AIRE COMPRIMIDO

Con este elemento, el aire es dotado de una fina neblina de aceite. De este modo las piezas móviles de los elementos neumáticos se proveen de lubricante, disminuyéndose el rozamiento y el desgaste. Funcionamiento: El aire atraviesa el lubricador, y una parte se conduce a través de una tobera. La caída de presión hace que, a través de un tubo de subida, se aspire aceite del depósito. En la tobera de aspiración el aire circulante arrastra las gotas de aceite, pulverizarlas.




No hay comentarios: